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We present a new, high order accurate method for the rapid, parallel evaluation
of certain integrals in potential theory on general three-dimensional regions. These
methods use fast methods for solving the differential equation which the kernel
satisfies, and the number of operations needed to evaluate the integrals is essentially
equal to the number of operations needed to solve the differential equation on a
regular rectangular grid. In particular, one can evaluate integrals whose kernels are
the Greens function for Poissons equation by using Fourier methods on a rectangular
grid, or, afast Poisson solver. Thus, these methods avoid the problems associated with
using quadrature methods to evaluate an integral with a singular kernel. Numerical
results are presented for experiments on a variety of geometriesgs Academic Press

1. INTRODUCTION

New, fast numerical techniques for generating and solving the matrix equations that
in integral equation methods [5, 6, 12, 15, 16] has led to their increased use in indu
applications. Despite the reduction in cost, however, the methods may still require expe
operations. This is because in order to completely solve a problem it is frequently ne
sary to evaluate a surface integral at many points of a region. Moreover, integral equ
formulations for inhomogeneous differential equations usually require the evaluation
volume integral.

The evaluation of both the volume and surface integrals is very expensive. In partic
we note thatO(n®) operations are needed in order to evaluate a volume integral at e
point of a three-dimensional x n x n grid, since the evaluation of each integral require
O(n®) operations.
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Aside from the cost of evaluating the integrals, an additional difficulty with integr
equation methods is the problem of accurately evaluating the solution at points inside
near the boundary. In integral equation methods for solving elliptic differential equatiol
the solution is expressed as the integral over the boundary of the product of a der
function and a singular kernel. The singularity of the kernel makes it difficult to compu
the solution accurately by quadrature at points near the region of integration.

In this paper we develop fast, parallel three-dimensional methods for evaluating volu
and surface integrals in potential theory which overcome these two problems. These ir
ods are mesh-based and are generalizations of our previous work. (See [7-11].) This
work has required a number of new numerical techniques. In particular, it has requi
the derivation of several new formulas which are not obvious generalizations of the tv
dimensional formulas, especially when the surface is curved. Specifically, we have ha
use the Frenet formulas in order to obtain second-order accurate approximations to
integrals. We have also used nested triangulations in order to compute volume intec
and integrals of double layer density functions. The new numerical algorithms have b
implemented on a distributed memory parallel computer, the IBM SP2.

The methods used to evaluate the integrals rely on fast finite difference methods. In tf
methods the irregular region on which it is desired to evaluate an intdgimembedded
in a larger rectangular region on which there is a regular grid. If, for example, the ker
of U satisfies Laplace’s equation, we compute an approximation to the integral by f
computing an approximation to its discrete Laplacian at all points of the regular grid. Tt
we apply an operator that inverts the discrete Laplagigrio obtain an approximation to
U. To compute an approximation t9,U at mesh points which have all their neighboring
mesh points on the same side of the boundary of the irregular region we use the fact tha
to truncation error, the discrete Laplacian is equal to the continuous Laplatiawhich
is known. However, because the integrals we compute necessarily have discontinuitie
some of their derivatives at the edge of the domain of integration, we must compute spe
correction terms at certain mesh points near the boundary. It turns out that these corre
terms can be computed in terms of the discontinuities in the derivatives of the integral :
how far the mesh points are from the boundary of the region of integration. We show h
to compute these discontinuities and how to use them to compute approximati®ogld to

We note that these three-dimensional volume integrals also arise in other context:
addition to the solution of inhomogeneous differential equations. In particular, they :
needed when applying the Biot Savart law to evaluate the magnetic field induced b
conducting wire. This law says that the fidl] induced by a conducting wire, is the curl
of the volume integral of the fundamental solution of Poisson’s equation multiplied by t
current densityd,

B(x,y,z):Vx/// J.idx’dydz’, (1.1
D b 43

wherer (X, Yy, z, X', Yy, Z) is the distance between the source and the evaluation poin
Therefore, each of the three components of the field is equal to the sum of integrals wt
kernels are comprised of products of derivatives of the fundamental solution with com,
nents of the current density.

In addition to being fast in the serial mode, these methods are easily parallelized.
have, in fact, evaluated the volume and surface integrals on the IBM SP2 parallel comp
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The organization of this paper is as follows. In Section 2 we show how to comput
second-order accurate approximation to volume integrals whose kernels are a fundan
solution of Poisson’s equation, and in Section 3 we discuss certain extensions of the me
tothe evaluation of other integrals. In particular, we show how to evaluate surface integre
single and double layer density functions and the derivatives of these integrals. In Sect
we provide results of numerical experiments, including some on the IBM SP2 distribt
memory parallel computer.

2. EVALUATION OF VOLUME INTEGRALS

As an example of how the method works, we first show how to compute a second-o
accurate approximation to a volume integral whose kernel satisfies Laplace’s equation
is, an integral of the form

1 1
E— fx.y.7Z / 7z 2.1
vix.y.2) 4n///or<x,y,z,xayzz'> Oy zydxdydz. - (2D)

wherer (X, y,z, X', ¥, Z) = /(X — X)2+ (Y — Y)2 + (z — Z)2. We embed the region of
integrationD in a larger rectangular regioR with mesh{(ihy, jhy, khy) 1 i =0, ..., ny,
j=0,...,ny,k=0,...,n,}. The integral is defined at all mesh points &.

Let (AphU); j k denote the usual seven-point approximation to the Laplacian:

hi
UG, j+1k+UG, j—1k —2Ud,j,k
+ 2
h
y
+ h? .

z

To obtain our approximatiody, to the integral we compute the approximation to its discre
Laplacian at all points oR, and then apply a Poisson solver. This gives an approximati
toU (X, vy, 2) throughoutR.

To compute the discrete Laplacian we use the fact that

AU =f inD, AU =0 outsideD. (2.2)

Therefore at mesh points &insideD that have all their neighbors I, we set{ AU )jjk =
fijk, and at points outsid® whose neighbors are also outsideve set(AyU);jx =0.

SinceU is not a smooth function, we cannot use either formula at pointsaieathat
is, at mesh points inside (outsidB) with one or more neighbors outside (insid2) See
Fig. 1 for a 2D illustration. (It is easy to see tHatis not smooth at the boundary Bf
because the Laplacian bf is discontinuous there.) Therefore, at such points the values
the discrete Laplacian are not well approximated by the values of the exact Laplacian

To compute an approximation to the discrete Laplaciatl cdit these irregular mesh
points, we will determine the discontinuitieslihand its derivatives and then use these ¢
correction terms in a Taylor series expansion for the Laplacian.
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FIG. 1. Irregular mesh points: x's and 0’s.

For a given functiorg defined onR which is discontinuous oAD let [g(p*)] denote
the discontinuity ing at a pointp* on dD. An integral of the form (2.1) and its normal
derivativeU, are continuous acro$dD, i.e.

[U]=0, (2.3)
[Un] =0.
Therefore, the components of the gradient are also continuous:
[Ux] =[Uy] = [U,] =0. (2.4)

By (2.2) there must be discontinuities in the second derivativés. of

To determine discontinuities in the six second derivativet) ofre differentiate (2.1)
in the normal direction and any two tangential directions to the surface, and we use
discontinuity in the Laplacian. That is, we use the six equations,

[Us =0, [Us] =0, [Uu] =0,

(2.5)
[Uns] =0, [Unt] =0, [Uxx] + [Uyy] + [UZZ] = f.
wheres andt are directions in the tangent plane.

To be more specific, suppose that the surfafehas been decomposed into curved
triangular patches, with each patch being the image of a trianglehes—t plane. A patch
corresponding to triangl€ can be represented as the set of pairts, t), y(s, t), z(s, t)),
where(s, t) € T, and any point| inside the patch corresponds to a paimt tg) € T.

For a fixed valudy, the function

a(s) = (X(s, tg), Y(s, tg), 2(s, tg)), (S, tq) €T,

is a curve on the surface, and

0 0 0
a1(s) = ay(s. 1) = (a—)g(s, t). a—Z(s, ty), a—i(s, tq))
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is atangentvector intrsdirection. Similarly, for afixed valug,, the curvex(sy, t), y(sq, 1),
z(sy, 1), (s, 1) € T, has tangent vector in thedirection given by

0 0 0
ap(t) = ap(sy. 1) = (8—’:<sq,t), 8—f<sq,t>, 8—f(sq,t>).

Let
a1 (Sy) = (a1, &2, &13)
and
a(ty) = (az1, a2, A23)
be the tangent vectors at the paiptThen

Us(@) = a1 - VU = ap1Ux(Q) + a12Uy(q) + a13Uz(Q),

and so

, ) 5 da]_
Uss = a7;Uxx + 2811812Uxy + 83Uy + 2811213Ux; + 2812813Uy7 4 813Uz2 + ds vu.
Similarly,

Uts = annap1Uxx + (a11822 + @12821)Uxy + @12822Uyy + (A11823 + @13821)Ux 2
dap
+ (a12823 + a13822)Uy; + a13a23U7, + ds vuU.
(By dap/dswe mean the derivative of the tangent vector inttgection, as we move along
the surface in thedirection.) It follows that in order to use (2.5) to determine discontinuitie
in derivatives ofJ at a poing on the surface we need to determine quantities sudhasls
andday/ds.
These can be determined using the Frenet formulas [14]:

dT

45 =N (2.6a)
‘3—': — T +1B (2.6b)
‘Z—E’ = —IN, (2.6¢)

whereT is the tangent vector along a cuni¢,is the normal vecto is the binormal is
the cuvature, and is the torsion.
Using (2.6a) on the curva(s) with tangenta; (s) we see that

da1 .

— =«N.
ds «



736 GREENBAUM AND MAYO

To determinaday,/dswe note that, since for fixe@, tq) the vectorsy, anda, are tangent
vectors at point| andB(s) also lies in the tangent plandl(is orthogonal to it), we have

a, = (ap, ay)a; + (ap, B)B.
This equation and (2.6c) imply that

(:_j% = (ap,a1)kN — (ap, B)TN.
Thus, the quantities on the right-hand side of (2.5) can be determined, and the syste
solved to find the discontinuities in the six second derivativasd at a pointg.

By differentiating the above equations and using higher derivatives of the bound:
surface it is possible to derive formulas for discontinuities in higher order derivatives.

We now show how to use these discontinuities to determine the discrete Laplatlan c
at the irregular mesh points. The integthlis defined at points both inside and outslde
We again let) (p*)] denote the jump itJ at a pointp* onaD.

To see how to compute the approximationAqU at irregular points, suppose, for
example, that a poinp is in D, but its neighbor to the rightg, is not. Letp* be the point
on the line betweemp and pg which intersect$ D, let h; be the distance betwegnand
p*, and leth, =h — h;.

By manipulating the Taylor series gtand pg both evaluated ap*, we can derive the
following expression folJ (pg) — U (p) (for details see [9]):

1 1
U (pe) = U(p) = [U(P)] + hofUx(p")] + SheUxx(P)] + h3Usex(PV)]
1 1
+hUsx(p) + Sh?Usx(P) + Sh*Ux(p) + O(h). 27

Note that the first four terms depend on the discontinuitié$ and in itsx derivatives at
the boundary. The other terms are the usual Taylor series terms. Therefore, the right-
side of (2.7) is a sum of terms that can be evaluated in terms of the discontinultlesid
its derivatives and terms that would be present even if there were no boundary bgtwee
and pg.

Now let pw, pPn, Ps, Pr, andpg be the mesh points to the left of, above, below, in front of

and behindp. We get the same type of expressions for the differences between the valu
U at p and at its other neighbors, thatis pw) — U (p), U (pn) — U (p), U(ps) — U (p),
U (pr) — U (p), andU (pg) — U (p), except that there will not be any boundary terms unles
oD passes betweenm and that neighbor. Therefore, we can compute an approximation
the seven-point discrete Laplacianldf which is just the sum of the above six differences.
This is done at all the irregular points.

If B denotes the set of irregular mesh points, then for mesh pEintg; , z) € B define
the mesh functiom;, to be the value of the extra terms in the discrete Laplacian obtain
by this procedure usin§ and its derivatives. We takd, to be the solution of the equations:

fiik, @, j, k) € D\B,
) fijk +mi, @, j.k)e BND,
A =9 i (i.j.k) € BN(R\D).

0, @, j, k) € (R\D)\B.
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If the values ofm; j « are third-order accurate, then by applying a second-order accul
Poisson solver we obtain a second-order accurate approxintatitmU (see [10, 11]).

We can clearly also compute higher order accurate solutions by using higher order ¢
rate approximations to the Laplacian.

Before applying a Poisson solver to obtain a solution we must supply appropriate bol
ary conditions on the boundary of the embedding cube. In particular, if we want to evall
the integral (2.1) corresponding to “free space” boundary conditions we need to u
Poisson solver that provides the propgr Hecay at infinity. It turns out in this case that
we can use a method originally developed by Hockney [3] and later improved by Ja
[4], where one calculates the boundary potential by finding a set of correction charge
the boundary of the embedding region, and then convolves them with a suitable Gre
function. This method, however, requires the application of two Poisson solvers.

In some applications only a particular solution of Poisson’s equation is needed. In
case we can use any Poisson solver. The integral that the method gives an approxima
is the one associated with the same boundary conditions as the fast Poisson solver w
For example, if we use a triply periodic Poisson solver, then we obtain an approximatic
the integral whose kernel is the periodic Green’s function for the Laplacian, instead of
free space Green’s functiorfrl. If we need an integral with a specific kernel, say one th
is periodic in only one direction, then we use the corresponding Poisson solver whic
periodic in that direction. (We note that the discontinuities in the derivatives of the integ
and therefore, the discrete Laplacian, will be the same, independent of which fundam
solution of Laplace’s equation is used as the kernel.)

3. EXTENSIONS

Inthis section we present extensions of the method of the previous section to the evalu
of other integrals. Specifically, we show how to evaluate certain surface integrals in pote
theory, and we also show how to evaluate derivatives of the surface and volume integ

In order to evaluate the surface integrals we use the same basic method that is us
evaluate the volume integrals. In particular, this method can be used to evaluate inte
of single layer density functions:

W = 1/4x // o(s,t)(1/r)dS
oD

As for volume integrals, the problem of evaluating this type of integral reduces to ev
ating its Laplacian in the two regions bounded by the boundary surface and evaluatin
discontinuities in its derivatives at the boundary. We first note that the Laplacian vanis
in the two regions, i.e.

0, insideD,

AW = {O, outsideD.

Itis also known [13] that such an integral is continuous in the tangential direction and
a discontinuity equal to the density in the normal direction:

W — WE = p(s, t)
W' — We = 0.
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The above two sets of equations and their derivatives determine the discontinuities in
derivatives ofW in the coordinate directions. Once determined, these discontinuities
used to determine the discrete Laplaciambfnd the functionWV itself.

Similarly, we can evaluate integrals of double layer density functions:

W = 1/47 // u(s - (1/r)ds
aD ang

Just as in the case of an integral of a single layer density function, this type of integre
harmonicinthe regio® and in the region outside. The only differenceis thatitis continuou
inthe normal direction and has a discontinuity equal to the density in the tangential directi

W, — We =0,
W — W = 4(s, t).

Once again these equations determine the discontinuities in the derivatives of these
grals in the coordinate directions, and these are used to determine the discrete Laplaci
the irregular mesh points.

We now show how to evaluate derivatives, or a linear combination of the derivatives
a surface or volume integral.

To evaluate discontinuities in derivatives of integrals with differentiated kernels we u
the fact that those integrals are derivatives of integrals with undifferentiated kernels.
example, suppose

V(p) = // [ 1(p)Gu(p. AV

where G(p, p) is the fundamental solution/t or its normal derivative. TheN (p) =
Uy (p), where

U(p)=// f(p)G(p, pHdV.
D

Since we know how to compute the discontinuities in the derivativels afe can, of course,
compute the discontinuities in the derivativesof U,. As before, once the discontinuity
terms are known they can be used to approximate the discrete Lapladian of

4. NUMERICAL EXPERIMENTS

We first tested this method on problems for which one can evaluate the integrals ana
cally, both inside and outside the region of integration. The test redlane used were the
unit cube, a simplified recording head geometry, and the unit sphere. The suriawds
all the regions were triangulated, and the computations were performed in double preci
(16 digits) on an IBM 3090 computer. The running time was essentially equal to the tir
needed to apply a three-dimensional Poisson solver. (We used POIS3D from FISHP
[17]) Although we have implemented fourth-order accurate versions of this method in t
dimensions [7, 10], so far we have implemented only a second-order accurate methc
three dimensions.
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TABLE |
Embedded Cube, Maximum Relative Errors

Max error for Max error for
n Surface nodes (x —3)>—y? y((x+42—-2%)+3

16 26 0.009 0.02
32 386 0.005 0.007
64 1538 0.0009 0.0005

The methods were tested by using Greens theorem to evaluate harmonic functions.
is, inside a regiorD we represented a harmonic functidnas the sum of a single and a
double layer density function:

U_1/471// <ua—ns——un )dS

We prescribed the exact values of the functidrand its normal derivative at the surface
nodes (i.e. at the vertices of the triangles) and used linear interpolation to obtain the vz
of these functions and their derivatives at other points inside the triangles.

In the first test examples we let =x + y + z on all three regions. As expected, we
obtained essentially machine accuracy (14 digits) in computing this function since |
linear. Although the Poisson solver is second-order accurate, one does not obtain ma
accuracy in computing polynomials of degree 2, since linear interpolation of the secc
degree polynomial values from the vertices to other points in the triangles is not ex
(When we provided the exact valuedbfat all points inside the triangle we again obtaine
essentially machine accuracy.)

In Tables | and Il we present results of other test problems. In these examples the en
ding region was the cube-.23, 1.3]%. The numbers in column 1 are the number of mes
points in each direction in the embedding cube, and the numbers in the second colum
the number of surface nodes.

The numbers in column 3 of Tables | and Il are the maximum relative errors in compu
the function(x — 3)2 — y? on the cube, and the numbers in column 4 are the maximt
relative errors obtained in computing the functipfix + 4)> — z%) + 3 on the cube. As
the surface mesh width is halved (the number of surface triangles grows by a factor
and the mesh width in each direction of the embedding cube is haivgbs by a factor
of 2), we expect about a factor of 4 reduction in the error. A somewhat better reductic
seenin going fromn = 32 ton = 64, perhaps because we have not yet reached the asympt
regime.

TABLE Il
Recording Head, Maximum Relative Errors

Max error for Max error for
n Surface nodes (x —3)2—y? y((X+4)?—-2%)+3

16 96 0.09 0.08
32 361 0.03 0.008
64 1438 0.002 0.001
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FIG. 2. U-shaped recording head.

The numbers in Table Il are for computations performed on the recording head geom
shown in Fig. 2. This region had equal pole tips of width 0.1, gap 0.1, height 0.8, a
uniform depth 0.8.

In the next set of experiments the region of integratidrwas the unit sphere, and
the embedding region was the cube2[3, 2.3]. We computed thex component of the
magnetic field of a unit sphere uniformly magnetized inxhgirection. We assumed unit
magnetizationM = 1. This function, which can be represented asthderivative of a
volume integral with densityf (x, y, z) =1, is equal to 1 inside the sphere, and equal tc
—3x2/r® + 1/r3 outside the sphere. The maximum error we obtained in computing tt
function when we placed 8190 triangles on the surface was 0.006, and when there v
2046 surface triangles the maximum error was 0.04.

The final set of experiments involved parallelization of the code. For large 3D pro
lems parallelization is a necessity because of storage requirements. A 100D x 1000
embedding cube contains one billion mesh points and these cannot be stored on a s
processor. Although the fast Poisson solver requires @ny®logn) operations for an
n x n x n grid, time can also be an issue for lamgeOur goal in parallelizing is to be able
to solve a problem on a2x 2n x 2n grid using & processors in about the same amoun
of time that it takes to solve amx n x n problem usingp processors. For this purpose we
used the IBM SP2, a distributed memory parallel machine with up to 512 processors.

The part of the code that requires the most time is the Poisson solver. The first ste
generating the right-hand side for the Poisson solver is to identify irregular mesh point
those that are inside the regiBnbut have one or more neighbors outside, or vice versa. Th
is accomplished by looping through the triangles that make up the boundary of the rec
and determining which lattice lines intersect each triangle. Each processor can handl
share of the boundary triangles, but a merge of the data is required at the end to chec
duplicates, since if a lattice line intersects the boundary at a vertex or edge of a trian
it might be recorded more than once. Additionally, if a lattice point lies near the surfa
of the region then it might be reported as outside the region and paired with its neigh



RAPID PARALLEL EVALUATION OF INTEGRALS 741

TABLE IlI
SP-2 Timings (Fast Poisson Solve Only)

Mesh points Processors Time (s)
128 1 9.4
256 8 13.0
512 64 16.7

inside, or it might be reported as inside the region and paired with its neighbor outside. |
intersection point is the same, the lattice pairs should be considered the same. It make:
difference whether the point is considered to be just inside or just outside the domain
it should be recorded only once. Currently, each processor retains the entire list of irreg
mesh points.

After determining the irregular mesh points, each processor is assigned eeptaimes
inthe embedding cube. The processor initializes the right-hand side elements correspo
to its planes to 0 and then loops through the irregular mesh points to determine which
affect its elements of the right-hand side vector. For the appropriate irregular mesh pc
each processor uses information about the boundary intersection point and discontir
in the integral to determine the right-hand side element corresponding to that point.

Now each processor contains its piece of the right-hand side vector and a parallel 3L
Poisson solver can be applied. The fast Poisson solver uses sine transforms iy doedz
directions. These are carried out by each processor using ESSL rolfird $§2]. First the
transforms in thex andy directions are computed, and then the data is transposed, so
each processor contains only certaiplanes. Then each processor can compute the s
transforms in the direction. After this, results are multiplied by appropriate factors, and t!
inverse sine transforms in tz@ndy directions are computed. The data is transposed age
so that each processor again contains data for cextplanes, and inverse transforms in
the x direction are computed. This requires two global communication steps. Fortunal
for the problems we have run, this global communication has been a small part of
overall computation time for large problems. Table Il shows timings for the fast Pois¢
solver only, when the amount of data per processor remains fixed. As can be seen, the
of solving larger problems using more processors, without greatly increasing compute
time has been fairly well achieved. In the future we plan to run a problem with a10:
mesh on 512 processors.

The operation count for the fast Poisson solver is approximateiy d§, n + 92n° for
ann x n x n grid. The 128 problem required approximatelyB x 10° double precision
floating point operations, giving a single processor execution rate of about 44 mflops. Fo
256° problem, run on eight processors, each processor executed at about 34 mflops; fi
512 problem on 64 processors, this execution rate was about 29 mflops per processor. .
from the ESSL library references, the code is written in standard Fortran and has not
optimized. These execution rates could probably be improved with additional coding ef
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